RNase T1 (100 units). The total cell lysate was applied to nitrocellulose paper with use of a 96 -well, vacuum operated dot-blot apparatus. The blots were hybridized to a ${ }^{35} \mathrm{~S}$-labeled d-ATP nick translated probe made by inserting full-length mouse mtDNA into pSP64 vector at the Sac1 site. The vector itself was used to generate a standard curve for each experiment. Dot blots were visualized by autoradiography and cut out, and radioactivity was determined by scintillation counting.

Flow Cytometric Analysis. Flow cytometric analysis of nuclear DNA content was performed with the RATCOM flow cytometer (RATCOM Inc., Miami, FL) interfaced with a microcomputer (IBM-XT). Cultured L1210 cells in log growth were incubated at $37^{\circ} \mathrm{C}$ with $10 \mu \mathrm{M}$ DESPM-3 and samples removed at $0,48,96$, and 144 h were analyzed for nuclear DNA content distributions after being stained with diamidinophenylindole in a nuclear isolation media (NIM-DAPI). ${ }^{20}$

Cloning Assay. L1210 cells maintained between $10^{5}$ and $10^{6}$ cells/mL were incubated with $10 \mu \mathrm{M}$ DESPM- 3 for 96 h . At $24-\mathrm{h}$ intervals, treated cells were washed $(2 \times 10 \mathrm{~mL})$ and diluted in fresh complete media and plated in triplicate 96 -well microtiter plates at 0.4 cell/well with each well containing $100 \mu \mathrm{~L}$ of sample. The plates were incubated at $37^{\circ} \mathrm{C}$ in a humidified incubator in an atmosphere of $5 \% \mathrm{CO}_{2}$ and $95 \%$ air. The plates were examined with an inverse-phase microscope at $100 \times$ magnification. The final number of colonies per plate was quantitated 7 days after plating. Groups of 50 or more cells/well were identified as having been cloned from a single viable cell. Also, at each $24-\mathrm{h}$ interval, treated cell samples were washed and the cells resus-
pended in fresh media at $10^{5}$ cells $/ \mathrm{mL}$ in duplicate $10-\mathrm{mL}$ flasks. The regrowth of the treated cells was followed for up to 144 h .

Cell Size. Cell size was determined directly by the method of Schwartz et al. ${ }^{21}$ In brief, uniform polymeric microspheres ranging from 4.72 to $10.2 \mu \mathrm{~m}$ in diameter (Polysciences, Warrington, PA) were diluted in Hematall (Fisher Scientific Co.). Electronic size was measured on the FACS Analyzer (Becton Dickinson, Sunnyvale, CA) with the amplifier in the log mode. The peak channel number for each size microbead was plotted against the corresponding calibrated diameter and calculated volume to obtain a calibration curve. L1210 cells were treated with $10 \mu \mathrm{M}$ DESPM-3 for $0-144 \mathrm{~h}$ and samples of $10^{6}$ cells were removed at $24-\mathrm{h}$ intervals and pelleted. The cells were resuspended in 0.5 mL of Hematall and analyzed. The peak channel number of the treated cells was plotted on the calibration curve to obtain the approximate cell size directly.

Registry No. $1,70655-37-7 ; 1 \cdot 2 \mathrm{HCl}, 113812-27-4 ; 2,113812$ -$18-3 ; 2 \cdot 4 \mathrm{HCl}, 113812-17-2 ; 3,61345-84-4 ; 3 \cdot 4 \mathrm{HCl}, 113812-15-0 ; 4$, $113812-20-7 ; 4 \cdot 4 \mathrm{HCl}, 113812-21-8 ; \mathbf{5}, 113812-11-6 ; \mathbf{5} \cdot \mathrm{HCl}$, 113812-12-7; 6, 113812-23-0; 6.4HCl, 113812-24-1; 7, 40563-84-6; 8, 113830-94-7; 8.4 HCl, 113812-26-3; 9, 113812-30-9; 10, 63958-61-2; 11, 113812-13-8; 12, 113812-14-9; 13, 113812-16-1; 14, 113812-19-4; 15, 113812-22-9; 16, 113812-25-2; 17, 113812-28-5; 18, 113812-29-6; SPM $\left.4 \mathrm{HCl}, 306-67-2 ; \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NHCCH}_{2}\right)_{3} \mathrm{NHC}_{2} \mathrm{H}_{5}, 10061-68-4 ; \mathrm{ClC}-$ $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COCl}, 543-20-4 ; \mathrm{CH}_{2}=\mathrm{CHCN}, 107-13-1 ; \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}(\mathrm{C}-$ $\left.\mathrm{H}_{2}\right)_{4} \mathrm{NHC}_{2} \mathrm{H}_{5}, 19435-68-8 ; \mathrm{CH}_{3} \mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{NHCOCH}_{3}$, 31991-$77-2 ; \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{SO}_{2} \mathrm{NHC}_{2} \mathrm{H}_{5}, 80-39-7 ; \mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}, 142-28-9$; 1,4-bis(3-aminopropyl)piperazine, 7209-38-3.
(20) Thornwaite, J. T.; Sugerbaker, E. V.; Temple, W. J. Cytometry 1980, 1, 229-237.
(21) Schwartz, A.; Sugg, H.; Ritter, T. W.; Fernandez-Repollet, E. Cytometry 1983, 3, 456-458.

# An Examination of $\boldsymbol{O}$-2-Isocephems as Orally Absorbable Antibiotics 

Harold Mastalerz, ${ }^{* \dagger}$ Marcel Menard, ${ }^{\dagger}$ Vivianne Vinet, ${ }^{\dagger}$ James Desiderio, ${ }^{\ddagger}$ Joan Fung-Tomc, ${ }^{\ddagger}$ Robert Kessler, ${ }^{\ddagger \ddagger}$ and Yuan Tsai ${ }^{\ddagger}$<br>Antiinfective Research, Bristol-Myers Pharmaceutical Group, Candiac, Quebec, Canada, J5R 1JJ1, and the Department of Microbiology, Bristol-Myers Pharmaceutical Group, Wallingford, Connecticut 06492-7660. Received August 26, 1987


#### Abstract

The synthesis and structure-activity relationships of a series of orally absorbed 0 - 2 -isocephems are described. These compounds possessed a D-[(p-hydroxyphenyl)glycyl]amino substituent at the 7 -position while the substituent at the 3 -position was varied. Relative to the analogous cephems, the $O$ - 2 -isocephems exhibited comparable to better activity against Gram-positive organisms. Against Gram-negative organisms, their activity was variable but did indicate a lower $\beta$-lactamase stability. Following oral administration, the $O$ - 2 -isocephems generally exhibited longer half-lives but lower $C_{\text {max }}$ 's and urinary recoveries.


The perception ${ }^{1}$ that the use of orally administered antibiotics can be more cost-effective has spurred the search for new, long-acting, orally active $\beta$-lactam antibiotics. 0 -2-Isocephems, e.g. 1, are nuclear analogues of the cephalosporins and have been extensively examined in these laboratories ${ }^{2 \mathrm{a}}$ as parenterally administered antibacterials. We have conducted a reexamination of this class of compounds to see if they would show promise as orally administered antiinfectives. This consisted of examining the activity of a group of O -2-isocephems bearing a D-[(p-hydroxyphenyl)glycyl]amino substituent at the 7 -position as a function of the nature of the substituent at the 3 -position. The results of this effort together with the details of a new, enantioselective O -2-isocephem synthesis are described in this paper.

## Chemistry

Since existing syntheses ${ }^{2}$ were too long and did not provide much room to vary the 3 -substituent, we devised

[^0]
a new synthesis (Scheme I), which would be more suited to our needs. We believed that the $O$ - 2 -isocephem 1 could
(1) Scrip, 1985 Chemotherapy Report; PJB Publications: Surrey, U. K., 1985; p 22.

Table I. In Vitro Antibacterial Activity

| compd | minimal inhibitory concentrations (MIC), ${ }^{a} \mu \mathrm{~g} / \mathrm{mL}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S. pyogenes | S. pneumoniae | S. faecalis | S. aureus ${ }^{\text {b }}$ | E. coli ${ }^{\text {b }}$ | K. pneumoniae | P. mirabilis | H. influenzae |
| 45 | 0.016 | 0.03 | 0.5 | 0.13 (32) | 2 (32) | 8 | 0.5 | 1 |
| 46 | 0.016 | 0.03 | 1 | 0.25 (32) | 2 (63) | 16 | 1 | 2 |
| 47 | 0.016 | 0.03 | 1 | 0.25 (125) | 2 (63) | 8 | 0.5 | 2 |
| 48 | 0.008 | 0.016 | 0.06 | 0.5 (125) | 2 (32) | 32 | 16 | 2 |
| 49 | 0.008 | 0.016 | 0.13 | 0.5 (32) | 4 (32) | 16 | 16 | 2 |
| 50 | 0.008 | 0.03 | 1 | 0.13 (125) | 2 (63) | 16 | 1 | 2 |
| 51 | 0.25 | 1 | 32 | 1 (16) | 4 (8) | 8 | 4 | 2 |
| 52 | 0.13 | 0.13 | 16 | 1 (32) | 8 (16) | 8 | 4 | 8 |
| 53 | 0.004 | 0.008 | 0.03 | 0.06 (63) | 2 (32) | 16 | 4 |  |
| 54 | 0.016 | 0.03 | 1 | 0.25 (125) | 4 (125) | 16 | 2 | 8 |
| 55 | 0.03 | 0.03 | 2 | 0.25 | 4 (32) | 16 | 4 |  |
| 56 | 0.016 | 0.03 | 2 | 0.13 (32) | 1 (4) | 2 | 0.25 | 2 |
| 57 | 0.03 | 0.06 | 4 | 0.25 (3) | 8 (32) | 8 | 1 | 4 |
| 58 | 0.016 | 0.03 | 18 | 0.13 (32) | 4 (8) | 4 | 1 | 1 |
| cefalexin | 0.5 | 0.5 | 32 | 0.5 | 8 (16) | 16 | 4 | 4 |
| cefaclor | 0.25 | 0.5 | 16 | 0.25 | 1 (32) | 1 | 0.25 | 1 |

${ }^{a}$ MIC determined by 2 -fold microdilution technique. ${ }^{b} \beta$-Lactamase producing strain in parentheses.
be derived from the $\beta$-keto ester 2 and that the latter could be obtained by condensation ${ }^{3}$ of the ester enolate of 3 with the activated form of a carboxylic acid. If successful, this approach would allow us to introduce the 3 -substituent as an acid derivative at a late stage of the synthesis and would thereby facilitate the preparation of this series of analogues. It would, however, require access to a source of the chiral azetidinone 4. For the sake of expediency, we turned to an existing synthesis ${ }^{4}$ of this material.
The 4-(hydroxymethyl)azetidinone 6 was prepared according to the literature procedure. ${ }^{4 a}$ Conversion (Chart I) of this material to the allyl acetate 10 was accomplished by the following sequence of reactions: oxidative removal of the dimethoxybenzyl group of 6 , protection of the alcohol function of 7 as a silyl ether, replacement of the benzyloxycarbonyl protecting group on 8 with a trityl group, and attachment of the allyl acetate group onto the nitrogen atom of the azetidinone 9 . With the acetate 10 in hand, we were ready to examine the proposed condensation reaction. We were pleased to find that the lithium enolate of 10 would indeed react with a variety of acid chlorides to give the $\beta$-keto esters $11-17$ in good yield ( $48-95 \%$ ). Removal of the silyl protecting group furnished the 3 -hydroxymethyl compounds $18-24$, and these, when subjected to the conditions of the Mitsunobu reaction, ${ }^{5}$ readily underwent cyclization to give the $O$ - 2 -isocephems 25-31 (Chart II). The trityl group was then replaced by an ( $R$ )- $N$-(allyloxycarbonyl) ( $p$-hydroxyphenyl)glycyl side chain to give the 7 -acylamido derivatives 32-38. At this stage, some additional functional group manipulation of

[^1]Chart I


5: $R=O: R^{\prime}=2,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} ; \mathrm{R}^{\prime \prime}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
6: R $=\mathrm{H}, \mathrm{OH}: \mathrm{R}^{\prime}=2.4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}: \mathrm{R}^{\prime \prime}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
7: R $=\mathrm{H}, \mathrm{OH} ; R^{\prime}=\mathrm{H} ; \mathrm{R}^{\prime \prime}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
8: R = H. OTBDMS: $R^{\prime}=\mathrm{H}: R^{\prime \prime}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
9: $R=H$. OTBDMS; $R^{\prime}=H: R^{\prime \prime}=\mathrm{CPh}_{3}$
10: $R=H$. OTBDMS: $R^{\prime}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} ; R^{\prime \prime}=\mathrm{CPh}_{3}$


| 11: $R=$ TBDMS: $R^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SePh}$ <br> 12: $\mathrm{R}=$ TBDMS; $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{Cl}$ | $\begin{aligned} & \text { 18: } R=H_{:} R^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SePh} \\ & \text { 19: } R=H: R^{\prime}=\mathrm{CH}_{2} \mathrm{Cl} \end{aligned}$ |
| :---: | :---: |
| 13: $R=$ TBDMS: $R^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SePh}$ | 20: $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SePh}$ |
| 14: $R=$ TBDMS: $R^{\prime}=H$ | 21: $R=H: R^{\prime}=H$ |
| 15: $\mathrm{R}=$ TBDMS; $\mathrm{R}^{\prime}=\mathrm{CH}_{3}$ | 22: $R=H_{:} \mathrm{R}^{\prime}=\mathrm{CH}_{3}$ |
| 16: $\mathrm{R}=$ TBDMS: $\mathrm{R}^{\prime}=n-\mathrm{Pr}$ | 23: $\mathrm{R}=\mathrm{H}: \mathrm{R}^{\prime}=n-\mathrm{Pr}$ |
| 17: $\mathrm{R}=\mathrm{T}$ BDMS; $\mathrm{R}^{\prime}=\mathrm{C}-\mathrm{C}_{3} \mathrm{H}_{5}$ | 24: $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}$ |

the 3 -substituent was required in order to prepare certain analogues. The respective precursors of the 3 -vinyl (45) and 3 -allyl (50) compounds, 39 and 40 , were obtained from 32 and 34 by oxidation followed by selenoxide elimination. The 3-chloromethyl compound 33 served as the precursor for the 3 -propenyl and 3 -trifluoropropenyl compounds 46-49. This transformation involved conversion of 33 to the iodide 41 and then reaction of the latter with triphenylphosphine to give the phosphonium salt 42. Wittig reaction of the in situ generated ylide with the appropriate aldehyde furnished mixtures of the olefin isomers 43 and 44. The last step was the palladium-catalyzed removal of the protecting groups. Purification and, where necessa:y, separation of olefin isomers was effected by reverse-phese column chromatography.

## Biological Results and Discussion

The in vitro antibacterial activity of the $O$-2-isocephems (45-54) and several corresponding cephems ${ }^{6}(55-58)$ is summarized in Table I.

[^2]
## Chart II


25: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SePh}$
32: $R=\mathrm{CH}_{2} \mathrm{CH}_{2} \operatorname{SePh}$ 39: $\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$
26: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Cl}$
27: $\mathrm{R}=$
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SePh}$
28: $R=H$
29: $\mathrm{R}=\mathrm{CH}_{3}$
30: $\mathrm{R}=n-\mathrm{Pr}$
34: $\mathrm{R}=$
40: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
41: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{I}$
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SePh} 42: \mathrm{R}=\mathrm{CH}_{2} \mathrm{PPh}_{3}{ }^{+} \mathrm{I}^{-}$
35: R = H 43: $\mathrm{R}=\mathrm{CH}=\mathrm{CHCH}_{3}$
36: $\mathrm{R}=\mathrm{CH}_{3}$
44: $\mathrm{R}=\mathrm{CH}=\mathrm{CHCF}_{3}$
31: $\mathrm{R}=\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}$
38: R $=\mathrm{C}-\mathrm{C}_{3} \mathrm{H}_{5}$


45: $\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$
46: $\mathrm{R}=\mathrm{cis}-\mathrm{CH}=\mathrm{CHCH}_{3}$
47: $\mathrm{R}=$ trans $-\mathrm{CH}=\mathrm{CHCH}_{3}$
48: $\mathrm{R}=\mathrm{cis}-\mathrm{CH}=\mathrm{CHCF}_{3}$
55: $\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$
56: $\mathrm{R}=$ cis $-\mathrm{CH}=\mathrm{CHCH}_{3}$
57: $\mathrm{R}=$ trans $-\mathrm{CH}=\mathrm{CHCH}_{3}$
58: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
50: $R=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
51: R $=\mathrm{H}$
52: $\mathrm{R}=\mathrm{CH}_{3}$
53: $\mathrm{R}=\pi-\mathrm{P}$
54: $R=c-C_{3} H_{5}$

Substitution at the 3-position generally enhanced activity in vitro against Gram-positive bacteria (streptococci and staphylococci) as shown by comparing 45-50 and 52-54 to 51. However, the latter was more active against the $\beta$-lactamase producing Staphylococcus aureus and Escherichia coli, suggesting lower $\beta$-lactamase stability among the substituted O -2-isocephems. There were relatively small or no differences in activity against the other Gram-negative bacteria, i.e., E. coli, Klebsiella pneumoniae, and Haemophilus influenzae. Activity against Proteus mirabilis was quite variable. The fluorinated compounds (48 and 49) in particular exhibited much lower activity against $P$. mirabilis.
Comparison of the $0-2$-isocephems $45-47$ and 50 to their corresponding cephems $\mathbf{5 5 - 5 8}$ showed no differences in intrinsic activity against Streptococcus pyogenes, Streptococcus pneumoniae, and S. aureus. Compounds 56 and 58 were more active than their corresponding isocephems 46 and 50 against the $\beta$-lactamase producing S. aureus. The 0 - 2 -isocephems were $2-8$-fold more active than the cephems against Streptococcus faecalis. The results with the Gram-negative bacteria were more variable, and no generalities were possible.
A comparison of pharmacokinetic parameters in blood and urinary recoveries following oral administration of $45-49$ and $55-58$ is shown in Table II. Compound 45 and its corresponding cephem 55 exhibited similar $C_{\max }$ values, but the half-life of 45 was longer. The other three O-2isocephems exhibited lower $C_{\text {max }}$ values than their corresponding cephems with longer half-lives for two of the three. Urinary recoveries of the three $O$-2-isocephems tested were significantly lower than those of the corresponding cephems.

Of these four pairs only two were compared directly in systemic infection models (Table III). Compounds 46 and 56 were similar in efficacy against $S$. pneumoniae but the cephem 56 was nearly 20 -fold more effective against $E$. coli. Apparently the 3 -fold higher $C_{\text {max }}$ of 56 was more important than the somewhat longer half-life of 46 in this model.

Table II. Pharmacokinetic Parameters of Selected Cephems and 0 -2-Isocephems in Mice after an Oral Dose of $50 \mathrm{mg} / \mathrm{kg}$

|  |  |  | percentage <br> of dose <br> recovered, <br> $0-6 \mathrm{~h}$ in |  |
| :---: | :---: | :---: | :---: | :---: |
| no. | $C_{\text {max }}, \mu \mathrm{g} / \mathrm{mL}$ | $T_{1 / 2}, \min$ | $\mathrm{AUC}, \mu \mathrm{g} / \mathrm{mL}$ | urine |
| $\mathbf{4 5}$ | 26 | 39 | 30 | 73 |
| $\mathbf{4 6}$ | 15 | 52 | 23 | 25 |
| $\mathbf{4 7}$ | 11 | 110 | 30 | 5 |
| $\mathbf{5 0}$ | 31 | 32 | 32 | 46 |
| $\mathbf{5 5}$ | 22 | 29 | 21 | $\mathrm{ND}^{a}$ |
| $\mathbf{5 6}$ | 46 | 29 | 42 | 85 |
| $\mathbf{5 7}$ | 35 | 47 | 45 | 65 |
| $\mathbf{5 8}$ | 45 | 34 | 41 | 79 |
| $\mathbf{N D}=$ not done. |  |  |  |  |

${ }^{a} \mathrm{ND}=$ not done.
Table III. Oral Therapeutic Efficacy of Selected O-2-Isocephems and Cephems in Systemically Infected Mice ${ }^{a}$

| no. | E. coli |  | S. pneumoniae |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIC, $\mu \mathrm{g} / \mathrm{mL}$ | $\begin{gathered} \mathrm{PD}_{50}{ }^{b} \\ \mathrm{mg} / \mathrm{kg} \text { per } \\ \text { dose } \end{gathered}$ | MIC, $\mu \mathrm{g} / \mathrm{mL}$ | $\begin{gathered} \mathrm{PD}_{50}, \\ \mathrm{mg} / \mathrm{kg} \text { per } \\ \text { dose } \end{gathered}$ |
| 45 | 2 | 2.1 | 0.03 | 0.8 |
| 46 | 2 | 19 | 0.03 | 0.30 |
| 47 | 2 | $>50$ | 0.03 | 1.8 |
| 48 | 2 | $>50$ | 0.016 | 2.7 |
| 49 | 4 | $>50$ | 0.016 | $>12.5$ |
| 50 | 4 | 9.2 | 0.016 | 1.0 |
| 51 | 4 | 6.2 | 1 | 33 |
| 52 | 8 | 11 | 0.13 | 2.1 |
| 54 | 4 | $>50$ | 0.03 | 3.6 |
| 56 | 2 | 1.2 | 0.016 | 0.4 |
| 57 | 8 | $\mathrm{ND}^{\text {c }}$ | 0.06 | 0.5 |

${ }^{a}$ Mice treated twice at 0 and 2 h after infection for $E$. coli, 1 and 3.5 h for $S$. pneumoniae. ${ }^{b} \mathrm{PD}_{50}=$ protective dose for $50 \%$ of animals tested. ${ }^{c} \mathrm{ND}=$ not done.

The relative importance of $C_{\text {max }}$ was also seen with the comparison of 57 ( 3 -fold higher $C_{\text {max }}$ ) and 47 ( 2 - 3 -fold longer half-life) against $S$. pneumoniae.

Compound 45 showed the best balance in activity in vivo against $E$. coli and S. pneumoniae (Table III) of the $O$ 2 -isocephems and was nearly as active as 56 , which is currently in clinical trials.

## Experimental Section

Melting points were taken on a Gallenkamp apparatus and are uncorrected. Optical rotations were obtained on a Perkin-Elmer 141 polarimeter. The UV and IR spectra were recorded on Hewlett-Packard 8451A and Perkin-Elmer 781 spectrophotometers, respectively. The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectra were obtained on a Bruker AC 200 instrument with tetramethylsilane as the internal standard for organic solvents and sodium 3-(trimethylsilyl)-propionate-2,2,3,3- $d_{4}$ for deuterium oxide. TLC was performed with EM Art. 5719 Kieselgel $60 \mathrm{~F}_{254}$ plates. Medium-pressure column chromatography employed EM Art. 9385 Kieselgel 60 ( $230-400$ mesh) with EtOAc/hexane mixtures being used as eluent. Where necessary, solvents were dried and reactions were conducted under an Ar atmosphere.

The final $O$ - 2 -isocephems were purified by medium-pressure column chromatography employing the absorbant from a Waters $\mathrm{C}_{18}$ PrepPak-500 column as the stationary phase and $\mathrm{CH}_{3} \mathrm{CN} /$ water mixtures as eluent. The desired fractions were combined, the organic solvent was removed under high vacuum, and then the water was removed by lyophilization. This left the isocephems as amorphous powders. Since these contained varying amounts of water of hydration, which could not be removed without some product decomposition, their final purity was judged by analytical HPLC. A Waters $\mathrm{C}_{18}$ Bondapak column ( $10 \mu \mathrm{~m}$ particle size, 3.8 $\mathrm{mm} \times 30 \mathrm{~cm}$ ) with a Waters 481 LC spectrophotometric detector was employed. Material of greater than $95 \%$ purity was used for biological evaluation.

In Vitro Antibacterial Activity. Conventional microtiter dilution procedures were used for determination of minimum
inhibitory concentrations (MICs). Organisms were grown overnight in Mueller-Hinton Broth (Difco) at $37^{\circ} \mathrm{C}$. Twofold dilutions of the stock solution of each compound ( $125 \mu \mathrm{~g} / \mathrm{mL}$ ) were made in Nutrient Broth (Difco) to obtain a test concentration range from 0.005 to $125 \mu \mathrm{~g} / \mathrm{mL}$. The wells were then inoculated with approximately $10^{4}$ organisms. The microtiter plates were incubated at $37^{\circ} \mathrm{C}$ for 18 h . The MIC was the lowest concentration of test compound that yielded no visible growth.

In Vivo Testing. Procedures for determining pharmacokinetics in mice and therapeutic efficacy in mice have been described. ${ }^{8-8}$ Briefly, male Swiss-Webster mice ( $20 \pm 2$ g) were dosed by gavage. Determinations of blood concentrations and urine levels were done by microbiological assay. Bacterial challenges were administered intraperitoneally with sufficient numbers of bacteria to kill untreated controls within 72 h . Animals were dosed at 0 and 2 h postchallenge with $E$. coli or 1 and 3.5 h postchallenge with $S$. pneumoniae.
(3S,4S )-3-(Benzyloxycarboxamido)-1-(2,4-dimethoxy-benzyl)-4-(hydroxymethyl)-2-azetidinone (6). A solution of (3S,4S)-3-(benzyloxycarboxamido)-1-(2,4-dimethoxybenzyl)-4-formyl-2-azetidine ( 5$)^{4 \mathrm{a}}(170 \mathrm{~g}, 0.43 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.90 \mathrm{~L})$ was placed in a water bath, and then $\mathrm{NaBH}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}{ }^{9}(850 \mathrm{~g}, 1 \mathrm{~g}$ of $\mathrm{NaBH}_{4} / 10 \mathrm{~g}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$ ) was added slowly with vigorous stirring. After 40 min , the alumina was removed by filtration and washed with EtOAc. The solvent was then removed from the filtrate to leave the crude alcohol $6(170 \mathrm{~g})$, which was used as such without further purification. A sample was crystallized from EtOAc: mp $129-130^{\circ} \mathrm{C}$; $[\alpha]^{2 \mathbf{1}}{ }_{\mathrm{D}}-12^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right.$ ); IR (KBr) $3480,3340,1730$ $\mathrm{cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) \delta 3.47-3.72(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 4.35\left(\mathrm{q}, 2 \mathrm{H}, \delta_{\mathrm{A}} 4.28, \delta_{\mathrm{B}} 4.42, J_{\mathrm{AB}}=14.4 \mathrm{~Hz}\right), 5.07$ $(\mathrm{m}, 3 \mathrm{H}), 6.42-7.31(\mathrm{~m}, 8 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(3S,4S )-3-(Benzyloxycarboxamido)-4-[[(tert-Butyldi-methylsilyl)oxy]methyl]-2-azetidinone (8). A stirred suspension of the crude alcohol 6 ( 170 g , ca. 0.45 mol ), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(161$ $\mathrm{g}, 1.4$ equiv), and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ ( $96 \mathrm{~g}, 1.3$ equiv) in a mixture of $\mathrm{CH}_{3} \mathrm{CN}$ $(4.4 \mathrm{~L})$ and water $(2.25 \mathrm{~L})$ was heated at ca. $95^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{10}$ At this point, additional quantities of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ( $32 \mathrm{~g}, 0.28$ equiv) and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ ( $19 \mathrm{~g}, 0.26$ equiv) were added, and heating was continued for an additional 3 h . After cooling, the organic solvent was removed, and the residual mixture was saturated with NaCl . This was extracted with $\mathrm{EtOAc}(4 \times 900 \mathrm{~mL})$, and then the combined organic phases were washed with aqueous $\mathrm{NaHCO}_{3}(2 \times 500 \mathrm{~mL}$, $2.5 \%$ ). After extraction of the aqueous phase with EtOAc ( 500 mL ), the combined organic phases were dried, and the solvents were removed. Chromatography afforded the alcohol 7 ( 73.0 g , $69 \%$ yield), which had physical properties that were in agreement with those reported. ${ }^{4 \mathrm{~b}}$

Triethylamine ( $114 \mathrm{~mL}, 2.20$ equiv) was added over 0.5 h to an ice-cooled, stirred solution of the alcohol $7(93.0 \mathrm{~g}, 0.372 \mathrm{~mol})$, tert-butyldimethylsilyl chloride ( $127 \mathrm{~g}, 2.20$ equiv), and 4 -(dimethylamino) pyridine ( $8.0 \mathrm{~g}, 0.2$ equiv) in DMF ( 900 mL ). The bath was removed, and the reaction mixture was left stirring for 1 h . It was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~L})$ and washed with water ( $3 \times 600 \mathrm{~mL}$ ) followed by brine $(600 \mathrm{~mL}$ ). After drying, the solvents were removed, and the residual oil was taken up in HOAc ( 325 mL ). KF ( $28.1 \mathrm{~g}, 1.30$ equiv) was added, and the reaction mixture was left stirring for 1 h . The reaction was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~L})$, and this was washed with water ( $5 \times 1 \mathrm{~L}$ ). After drying and removal of the solvents, the crude material was chromatographed to give the monosilylated product 8 (113 g, 84\% yield) as an oil: $[\alpha]^{21}{ }_{D} 30^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$ ); IR (neat) 3200,1765 , $1720 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 3.70-3.91$ $(\mathrm{m}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{q}, 1 \mathrm{H}, J=5.1,10.2 \mathrm{~Hz}), 5.92(\mathrm{~d}$, 1 H , exchangeable, $J=10.2 \mathrm{~Hz}$ ), $6.05(\mathrm{~s}, 1 \mathrm{H}$, exchangeable), 7.30 (s, 5 H ). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

[^3](3S,4S )-4-[[(tert-Butyldimethylsilyl)oxy]methyl]-3-(tritylamino)-2-azetidinone (9). A stirred suspension of the benzyloxycarboxamido compound $8(113 \mathrm{~g}, 0.310 \mathrm{~mol})$ and Pd catalyst ( $29 \mathrm{~g}, 10 \%$ on charcoal) in EtOAc ( 1.2 L ) was maintained under a $\mathrm{H}_{2}$ atmosphere until the starting material had disappeared (ca. 3 h ). The catalyst was removed by filtration, and then the solvent was removed from the filtrate. The white residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~L})$, and trityl chloride ( $90.0 \mathrm{~g}, 1.04$ equiv) followed by $\mathrm{NEt}_{3}(46.0 \mathrm{~mL}, 1.05$ equiv) was added. After being stirred for 1.5 h , the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~L})$ and washed with water $(3 \times 600 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. It was then dried, and the solvent was removed. Chromatography afforded the product 9 ( $115 \mathrm{~g}, 79 \%$ ) as a pale yellow solid: mp 203-205 ${ }^{\circ} \mathrm{C} ;[\alpha]^{21} \mathrm{D} 34^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; IR (KBr) $3350,3300,1770,1735 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) \delta-0.12(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9$ $\mathrm{H}), 2.38-3.15(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 7.13-7.54(\mathrm{~m}$, $15 \mathrm{H})$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Allyl 2-[(3S,4S )-4-[[(tert-Butyldimethylsilyl)oxy]-methyl]-2-0xo-3-(tritylamino)-1-azetidinyl]acetate (10). A solution of allyl 2-bromoacetate ( 4.30 g , 2 equiv) in dry THF ( 24 mL ) was added over ca. 0.5 h to a stirred suspension of the azetidinone $9(5.66 \mathrm{~g}, 12 \mathrm{mmol})$, tetrabutylammonium bromide ${ }^{11}$ ( $786 \mathrm{mg}, 0.20$ equiv), and freshly powdered $\mathrm{KOH}(876 \mathrm{mg}, 1.30$ equiv) in dry THF ( 24 mL ). This was left stirring for 20 h after which it was diluted with EtOAc and washed with water and brine. After drying and removal of the solvents, the residual oil was chromatographed to give the acetate $10(4.04 \mathrm{~g}, 59 \%)$ as white crystals: mp 98-101 ${ }^{\circ} \mathrm{C} ;[\alpha]^{21}{ }_{\mathrm{D}} 0^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$ ); IR 3360, 1765, $1745 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) \delta-0.14(\mathrm{~s}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H})$, $0.81(\mathrm{~s}, 9 \mathrm{H}), 2.47(\mathrm{dd}, 1 \mathrm{H}, J=3.6,11.7 \mathrm{~Hz}), 3.10(\mathrm{dd}, 1 \mathrm{H}, J$ $=2.3,11.7 \mathrm{~Hz}$ ), 3.32 (ddd, $1 \mathrm{H}, J=3.6,2.3,4.9 \mathrm{~Hz}$ ), $3.43(\mathrm{~d}, 1$ $\mathrm{H}, J=18.0 \mathrm{~Hz}), 4.36(\mathrm{~d}, 1 \mathrm{H}, J=18.0 \mathrm{~Hz}), 4.43(\mathrm{~d}, 1 \mathrm{H}, J=4.9$ $\mathrm{Hz}), 4.52(\mathrm{~m}, 2 \mathrm{H}), 5.18-5.30(\mathrm{~m}, 2 \mathrm{H}), 5.76-5.90(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.53$ $(\mathrm{m}, 15 \mathrm{H})$. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Allyl (6S,7S)-8-0xo-3-[2-(phenylseleno)ethyl]-7-(trityl-amino)-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylate (25). A suspension of 3-(phenylseleno) propionic acid ${ }^{12}$ ( $19.0 \mathrm{~g}, 0.083$ mol ) in oxalyl chloride ( $7.60 \mathrm{~mL}, 1.05$ equiv) was left stirring for 4 h . The resulting solution was then distilled to give 3 -(phenylseleno) propionyl chloride ( $13.8 \mathrm{~g}, 67 \%$ yield) as a yellow liquid: bp $102-112{ }^{\circ} \mathrm{C}(0.11 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.17(\mathrm{~m}, 4 \mathrm{H}), 7.39$ (m, 5 H ).

A solution of allyl $2-[(3 S, 4 S)-4-[[$ (tert-butyldimethylsilyl)-oxy]methyl]-2-oxo-3-(tritylamino)-1-azetidinyl]acetate (10) (3.91 $\mathrm{g}, 6.86 \mathrm{mmol}$ ) in dry THF ( 75 mL ) under argon was cooled to -78 ${ }^{\circ} \mathrm{C}$. To this was added a solution of lithium bis(trimethylsilyl)amide ( $14.1 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 2.05 equiv) dropwise. Then, after the mixture was stirred for 3 min , neat 3 -(phenylseleno)propionyl chloride ( $1.22 \mathrm{~mL}, 1.05$ equiv) was added dropwise. The reaction mixture was left stirring for 20 min after which it was quenched by the addition of a solution of acetic acid $(1.30 \mathrm{~mL}$, 3.3 equiv) in THF ( 10 mL ). After being allowed to warm to 0 ${ }^{\circ} \mathrm{C}$, the reaction mixture was diluted with EtOAc ( 200 mL ), washed with brine ( $2 \times 30 \mathrm{~mL}$ ), and dried, and the solvent was removed. Chromatography afforded allyl $2-[(3 S, 4 S)-4-[[$ (tert-butyldimethylsilyl) oxy]methyl]-2-oxo-3-(tritylamino)-1-azetidinyl]-3-oxo-5-(phenylseleno)pentanoate (11) ( $2.54 \mathrm{~g}, 48 \%$ yield) as an oil: $R_{f} 0.55$ (EtOAc/hexane, 1:1).
To a solution of the azetidinone $11(9.88 \mathrm{~g}, 12.7 \mathrm{mmol})$ in dry THF ( 190 mL ) under argon was added a solution of tetrabutylammonium fluoride ( $15.2 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 1.2 equiv). After 15 min , acetic acid ( $0.95 \mathrm{~mL}, 1.3$ equiv) was added. The reaction was then diluted with EtOAc $(400 \mathrm{~mL})$, washed with brine ( 40 mL ), and dried. Removal of the solvent followed by chromatography afforded allyl $2-[(3 S, 4 S)-4$-(hydroxymethyl)-2-oxo-3-(tritylamino)-1-azetidinyl]-3-oxo-5-phenylseleno)pentanoate (18) ( $6.46 \mathrm{~g}, 76 \%$ ) as a foam: $R_{f} 0.71$ (EtOAc/hexane, $1: 1$ ).

To a solution of the alcohol $18(6.49 \mathrm{~g}, 9.73 \mathrm{mmol})$ and triphenylphosphine ( $2.68 \mathrm{~g}, 1.05$ equiv) in dry THF ( 270 mL ) under argon was added diisopropyl azodicarboxylate ( $2.07 \mathrm{~mL}, 1.05$
(11) Reuschling, D.; Pietsch, H.; Linkies, A.; Tetrahedron Lett. 1978, 615.
(12) Miyoshi, N.; Ishii, H.; Murai, S.; Sonoda, N.; Chem. Lett. 1979, 873.
equiv). After 15 min , the solvent was removed, and the residual oil was chromatographed to afford the $0-2$-isocephem 25 ( 5.30 $\mathrm{g}, 73 \%$ yield) as white crystals (from EtOAc/hexane): mp 128-129 ${ }^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) 1770,1710,1610 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.71-3.35$ (m, 8 H ), 4.56-4.97 (m, 3H), 5.20-5.42 (m, 2 H ), 5.83-6.00 (m, $1 \mathrm{H}), 7.19-7.49(\mathrm{~m}, 20 \mathrm{H})$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Se}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
( $\boldsymbol{R}$ )- $\boldsymbol{N}$-[(Allyloxy)carbonyl]-2-(4-hydroxyphenyl)glycine. (R)-2-(4-hydroxyphenyl)glycine ( $16.7 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) was dissolved in a mixture of diethyl ether ( 100 mL ), water ( 200 mL ), and aqueous NaOH solution ( $100 \mathrm{~mL}, 1 \mathrm{~N}, 1.0$ equiv). This was cooled in an ice bath, and then solutions of allyl chloroformate [ 12.1 g , 1.0 equiv, in dry dioxane ( 100 mL )] and aqueous NaOH ( 100 mL , $1 \mathrm{~N}, 1.0$ equiv) were added contemporaneously over 1 h . The mixture was left stirring in the ice bath for 1 h after which the organic phase was separated. The aqueous phase was washed with ether ( $3 \times 200 \mathrm{~mL}$ ), and then its pH was adjusted to 2.5 by the addition of concentrated $\mathrm{H}_{3} \mathrm{PO}_{4}$. This mixture was then extracted with EtOAc $(2 \times 200 \mathrm{~mL})$. The combined organic extracts were washed with water $(50 \mathrm{~mL})$ and dried, and then the solvents were removed. Trituration of the residual gum with a mixture of benzene ( 50 mL ) and petroleum ether ( $400 \mathrm{~mL}, 30-60^{\circ} \mathrm{C}$ ) gave a white solid. This was taken up and digested in boiling benzene ( $10 \mathrm{~mL} / \mathrm{g}$ ). After cooling, the white solid was collected and washed successively with benzene and petroleum ether. This gave the pure $N$-allyloxycarbonyl derivative as a white powder ( $12.4 \mathrm{~g}, 50 \%$ yield): $\operatorname{mp} 147-149^{\circ} \mathrm{C} ;[\alpha]^{21} \mathrm{D}-158.3^{\circ}$ (c $1.0, \mathrm{MeOH}$ ); IR (KBr) $3200,1735,1650 \mathrm{~cm}^{-1}$; NMR (DMSO-d ${ }_{6}$ ) 4.47 (m, 2 H ), 4.97 (d, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.12-5.32(\mathrm{~m}, 2 \mathrm{H}), 5.79-5.98(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}$, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.85(\mathrm{~d}, 1 \mathrm{H}, J=7.9$ Hz ). Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(6S,7S )-7-[[(R)-2-(4-Hydroxyphenyl)glycyl]amino]-8-oxo-3-vinyl-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylic Acid (45). A solution of the trityl derivative $25(5.60 \mathrm{~g}, 8.64 \mathrm{mmol})$ in acetone ( 50 mL ) was cooled in an ice bath, and $p$-toluenesulfonic acid monohydrate ( $1.81 \mathrm{~g}, 1.1$ equiv) was added with stirring. After being allowed to stand for 19 h , the crystals were collected, washed with a little cold acetone and ether, and then dried under high vacuum. This gave the $p$-toluenesulfonic acid salt of allyl (6S,7S)-7-amino-3-[2-(phenylseleno)ethyl]-8-oxo-1-aza-4-oxabi-cyclo[4.2.0]oct-2-ene-2-carboxylate ( $3.60 \mathrm{~g}, 72 \%$ yield) as white crystals. This material ( $1.08 \mathrm{~g}, 1.87 \mathrm{mmol}$ ) was suspended in EtOAc ( 20 mL ), and a stream of argon was allowed to bubble through the suspension. Then, sufficient saturated aqueous sodium bicarbonate solution was added with stirring to bring the pH of the aqueous phase to 8 . The aqueous phase was removed and extracted with a little EtOAc. The combined organic phases were washed with brine and dried, and the solvent was removed. The residual oil was taken up in EtOAc ( 20 mL ), and EEDQ ( 524 $\mathrm{mg}, 1.1$ equiv) followed by ( $R$ )- $N$-[(allyloxy)carbonyl]-2-(4hydroxyphenyl)glycine ( $516 \mathrm{mg}, 1.1$ equiv) was added. The resulting solution was left stirring at ambient temperature for 3 h after which it was washed with aqueous $\mathrm{HCl}(3 \times 4 \mathrm{~mL}, 1 \mathrm{~N})$, saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 3 mL ), and water ( 3 mL ). The organic phase was dried, and the solvent was removed. Chromatography of the residual oil afforded allyl ( $6 S, 7 S$ )-7-[[(R)-N-[(allyloxy) carbonyl]-2-(4-hydroxyphenyl)glycyl]-amino]-3-[2-(phenylseleno)ethyl]-8-oxo-1-aza-4-oxabicyclo[4.2.0] oct-2-ene-2-carboxylate (32) $(1.10 \mathrm{~g}, 92 \%$ yield) as a foam: NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 3.02(\mathrm{~s}, 4 \mathrm{H}), 3.40(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}$ ), 3.66 (ddd, $1 \mathrm{H}, J=10.5,3.7,3.8 \mathrm{~Hz}$ ), $4.20(\mathrm{dd}, 1 \mathrm{H}, J=10.5,3.7 \mathrm{~Hz})$, $4.50-4.65(\mathrm{~m}, 4 \mathrm{H}), 5.08-5.37(\mathrm{~m}, 6 \mathrm{H}), 5.76-5.98(\mathrm{~m}, 3 \mathrm{H}), 6.15$ (br s, 1 H ), 6.75 (d, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}$ ), $6.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, 2$ $\mathrm{H}, J=8.4 \mathrm{~Hz}), 7.18-7.48(\mathrm{~m}, 5 \mathrm{H})$.

A solution of the selenide 32 ( $889 \mathrm{mg}, 1.39 \mathrm{mmol}$ ) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$ ) and water ( 1 mL ) was cooled in an ice bath. This was stirred vigorously, and pyridine ( $0.224 \mathrm{~mL}, 2$ equiv) followed by hydrogen peroxide ( $0.358 \mathrm{~mL}, 30 \%$ aqueous solution, 3 equiv) was added. The bath was removed, and the reaction mixture was left stirring for 20 min . The organic phase was separated and washed with saturated aqueous $\mathrm{NaHCO}_{3}$ solution $(2 \times 2 \mathrm{~mL})$, water $(3 \times 2 \mathrm{~mL})$, and brine ( 2 mL ). After drying, the solvent was removed, and the residual oil was chromatographed to afford allyl ( $6 S, 7 S$ )-7-[[(R)-N[(allyloxy)carbonyl]-2-(4-hydroxyphenyl)glycyl]amino]-8-oxo-3-vinyl-1-aza-4-oxabi-cyclo[4.2.0]oct-2-ene-2-carboxylate (39) ( $539 \mathrm{mg}, 81 \%$ ) as a tan solid: $\mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) 3.54(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 4.30$
(m, 1 H$), 4.50-4.71(\mathrm{~m}, 5 \mathrm{H}), 5.12-5.46(\mathrm{~m}, 6 \mathrm{H}), 5.75-6.04(\mathrm{~m}$, $3 \mathrm{H}), 6.60-6.73$ (m, 2 H), 7.05-7.29 (m, 3 H ).

A mixture of the 3 -vinyl compound 39 ( $1.71 \mathrm{~g}, 3.54 \mathrm{mmol}$ ), tetrakis(triphenylphosphine)palladium (0) ( $204 \mathrm{mg}, 0.05$ equiv) and triphenylphosphine ( $200 \mathrm{mg}, 0.20$ equiv) in a flask was purged with argon. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(34 \mathrm{~mL})$ followed by 2-ethylhexanoic acid ( $1.15 \mathrm{~mL}, 4$ equiv) was added. This was left stirring for 2.25 h , during which time a precipitate formed. This was collected, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried. Reverse-phase chromatography followed by lyophilization of the appropriate fractions afforded the desired 3 -vinyl- $O$ - 2 -isocephem 45 ( $410 \mathrm{mg}, 32 \%$ ) as an offwhite powder: UV ( $\left.\mathrm{H}_{2} \mathrm{O}\right) 298(\epsilon 14700), 230 \mathrm{~nm}(\epsilon 12900)$; IR (KBr) $1760,1695,1550 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 3.51(\mathrm{t}, 1 \mathrm{H}, J=10.1$ Hz ), 3.95 (ddd, $1 \mathrm{H}, J=10.1,3.8,4.7 \mathrm{~Hz}$ ), 4.32 (dd, $1 \mathrm{H}, J=3.8$, $10.1 \mathrm{~Hz}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{dd}, 1 \mathrm{H}, J=1.7,11.1 \mathrm{~Hz}), 5.62(\mathrm{~d}$, $1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 5.70(\mathrm{dd}, 1 \mathrm{H}, J=1.7,17.3 \mathrm{~Hz}), 6.92(\mathrm{dd}, 1 \mathrm{H}$, $J=11.1,17.3 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.7 Hz ).

Allyl (6S,7S )-3-(Chloromethyl)-8-oxo-7-(tritylamino)-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylate (26). Similarly, by using chloroacetyl chloride, the azetidinone 10 was converted to allyl $2-[(3 S, 4 S)-4-[[($ tert-butyldimethylsilyl)oxy]methyl]-2-oxo-3-(tritylamino)-1-azetidinyl]-3-0xo-4-chlorobutanoate (12) ( $95 \%$ yield): $R_{f} 0.58$ (EtOAc/hexane, 1:4). Desilylation of 12 afforded allyl 2-[(3S,4S)-4-(hydroxymethyl)-2-oxo-3-(trityl-amino)-1-azetidinyl]-3-oxo-4-chlorobutanoate (19) ( $77 \%$ yield): $R_{f} 0.35$ (EtOAc/hexane, 1:1). Cyclization of 19 gave the 3chloromethyl derivative (26) ( $82 \%$ yield) as a white solid: mp $77-78^{\circ} \mathrm{C}$; IR ( KBr ) $3350,1770,1710,1610 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 2.80(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 2.95-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.68(\mathrm{~m}, 1$ $\mathrm{H}), 4.49\left(\mathrm{q}, \delta_{\mathrm{A}} 4.50, \delta_{\mathrm{B}} 4.47, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}\right), 4.61-4.76(\mathrm{~m}, 2 \mathrm{H})$, 4.81 (dd, $1 \mathrm{H}, J=5.4,4.2 \mathrm{~Hz}$ ), $5.21-5.43$ (m, 2 H ), $5.85-6.05$ (m, $1 \mathrm{H}), 7.20-7.39(\mathrm{~m}, 15 \mathrm{H})$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}\right) \mathrm{C}, \mathrm{N} ; \mathrm{H}$ : calcd, 5.29; found, 5.82 .
(6S,7S )-7-[[(R)-2-(4-Hydroxyphenyl)glycyl]amino]-8-oxo-3-(cis-1-propenyl)-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2carboxylic Acid (46) and the 3-(trans-1-Propenyl) Isomer (47). The tritylamine 26 was converted to allyl ( $6 S, 7 S$ )-7-[[(R)-N-[(allyloxy) carbonyl]-2-(4-hydroxyphenyl)glycyl]-amino]-3-(chloromethyl)-8-oxo-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylate (33) ( $79 \%$ yield): $R_{f} 0.41$ (two developments, EtOAc/hexane, (1:1).

A suspension of the chloride 33 ( $5.27 \mathrm{~g}, 10.4 \mathrm{mmol}$ ) and sodium iodide ( $2.35 \mathrm{~g}, 1.5$ equiv) in acetone ( 50 mL ) was left stirring at room temperature for 2 h . The solvent was removed, and the residual material was suspended in EtOAc. This was washed with water and dried, and the solvent was removed. A solution of this crude iodide ( 41 ) in EtOAc ( 25 mL ) was cooled in an ice bath, and triphenylphosphine ( $2.72 \mathrm{~g}, 1.0$ equiv) was added with stirring. After 18 h , ether ( 25 mL ) was added, and the crude phosphonium salt (42) ( 7.92 g ) was collected by filtration. A solution of the crude salt ( $2.0 \mathrm{~g}, 2.33 \mathrm{mmol}$ ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ was cooled in an ice bath, and then acetaldehyde ( $526 \mu \mathrm{~L}, 4$ equiv) followed by ethylene oxide ${ }^{14}$ ( $466 \mu \mathrm{~L}, 4$ equiv) was added. The flask was sealed with "parafilm" and then removed from the ice bath. After 24 $h$ at room temperature in the dark, the solvent was removed, and the residual oil was chromatographed to give a mixture of the cisand trans-propenyl isomer (43) ( $831 \mathrm{mg}, 72 \%$ ): $R_{f} 0.24$ (EtOAc/hexane, $1: 1$ ).
$N$-Methylaniline ${ }^{13}$ ( $2.18 \mathrm{~mL}, 4$ equiv) was added to a stirred solution of the olefin isomers $43(2.50 \mathrm{~g}, 5.03 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium ( 0 ) ( $190 \mathrm{mg}, 0.03$ equiv), and triphenylphosphine ( $190 \mathrm{mg}, 0.12$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$ ) under Ar. After 50 min , the precipitate was collected, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried under high vacuum. Chromatography followed by lyophilization of the appropriate fractions afforded the 3 -cis-propenyl compound 46 as a light yellow powder ( 455 mg , $24 \%$ ): UV ( $\mathrm{H}_{2} \mathrm{O}$ ) 228 ( $\epsilon 17700$ ), $300 \mathrm{~nm}(\epsilon 17500)$; IR ( KBr disk) $3250,1755,1600 \mathrm{~cm}^{-1} ; \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.78(\mathrm{dd}, 3 \mathrm{H}, J=1.7,7.2$
(13) Excess 2-ethylhexanoic acid is generally used as the acceptor for the allyl group: Jeffrey, P. D.; McCombie, S. W. J. Org. Chem. 1982, 47, 587. We have found that this deprotection is quicker when $N$-methylaniline is used as the acceptor. (14) Buddrus, J. Chem. Ber. 1974, 107, 2050.
$\mathrm{Hz}), 3.52(\mathrm{t}, 1 \mathrm{H}, J=10 \mathrm{~Hz}), 3.91(\mathrm{ddd}, 1 \mathrm{H}, J=10,3.9,4.7 \mathrm{~Hz})$, $4.22(\mathrm{dd}, 1 \mathrm{H}, J=3.9,10), 4.90(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz})$, $5.84(\mathrm{dq}, 1 \mathrm{H}, J=11.9,7.2 \mathrm{~Hz}), 6.18(\mathrm{dd}, 1 \mathrm{H}, J=11.9,1.7 \mathrm{~Hz})$, $6.97(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz})$ followed by the trans-propenyl isomer $47\left(245 \mathrm{mg}, 13 \%\right.$ yield): UV $\left(\mathrm{H}_{2} \mathrm{O}\right)$ $230(\epsilon 9900), 300 \mathrm{~nm}(\epsilon 11300)$; IR (KBr) 3200, 1755, 1690, 1540 $\mathrm{cm}^{-1}$; NMR ( $\left.\mathrm{D}_{2} \mathrm{O}\right) 1.79(\mathrm{dd}, 3 \mathrm{H}, J=6.8,1.5 \mathrm{~Hz}), 3.48(\mathrm{t}, 1 \mathrm{H}$, $J=10.5 \mathrm{~Hz}$ ), 3.91 (ddd, $1 \mathrm{H}, J=4.7,3.7,10.5 \mathrm{~Hz}$ ), 4.28 (dd, 1 $\mathrm{H}, J=3.7,10.5 \mathrm{~Hz}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 6.26$ (dq, $1 \mathrm{H}, J=15.4,6.8 \mathrm{~Hz}$ ), 6.63 (dd, $1 \mathrm{H}, J=15.4,1.5 \mathrm{~Hz}$ ), 6.99 $(\mathrm{d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.35(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$.
(6S,7S )-7-[[(R)-2-(4-Hydroxyphenyl)glycyl]amino]-8-oxo-3-(1-cis-3,3,3-trifluoropropenyl)-1-aza-4-oxabicyclo-[4.2.0]oct-2-ene-2-carboxylic Acid (48) and the 3-(1-trans-$3,3,3$-Trifluoropropenyl) Isomer (49). To a solution of the crude phosphonium salt $42(2.25 \mathrm{~g}, 3.08 \mathrm{mmol})$ and triethylamine ( 0.43 $\mathrm{mL}, 1.0$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ under argon and at -78 ${ }^{\circ} \mathrm{C}$ was added a solution of trifluoroacetaldehyde ${ }^{15}(4.41 \mathrm{~mL}, 2.75$ $\mathrm{g} / 10 \mathrm{~mL}$ of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ca. 4 equiv), which had been cooled to $-78^{\circ} \mathrm{C}$. The reaction was then placed in an ice bath and left stirring for 15 min after which it was washed with brine ( 5 mL ) and dried, and the solvent was removed. Chromatography afforded a mixture of the olefin isomers $44(1.16 \mathrm{~g}, 70 \%)$ as a waxy solid: $R_{f} 0.69$ (EtOAc/hexane, 3:2). Deprotection as above, followed by chrornatography afforded the cis olefin isomer 48 (206 $\mathrm{mg}, 23 \%$ yield) as an off-white powder [UV $\left(\mathrm{H}_{2} \mathrm{O}\right) 230(\epsilon 11800)$, $308 \mathrm{~nm}\left(\epsilon 12800\right.$ ); IR (KBr) $3200,1770,1690,1570 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 3.36(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 3.97(\mathrm{ddd}, 1 \mathrm{H}, J=10.5,4.0$, $4.8 \mathrm{~Hz}), 4.23(\mathrm{dd}, 1 \mathrm{H}, J=10.5,4.0 \mathrm{~Hz}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~d}$, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 5.83(\mathrm{dq}, 1 \mathrm{H}, J=9.3,12.6 \mathrm{~Hz}), 6.90(\mathrm{~d}, 1 \mathrm{H}$, $J=12.6 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz})]$ and the trans olefin isomer 49 ( $165 \mathrm{mg}, 18 \%$ yield) as a white powder [UV $\left(\mathrm{H}_{2} \mathrm{O}\right) 228(\epsilon 17000), 308 \mathrm{~nm}(\epsilon 21000)$; IR (KBr) $3200,1770,1690,1580 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 3.62(\mathrm{t}, 1$ $\mathrm{H}, J=10.4 \mathrm{~Hz}$ ), 4.01 (ddd, $1 \mathrm{H}, J=10.4,3.9,4.9 \mathrm{~Hz}$ ), 4.45 (dd, $1 \mathrm{H}, J=10.4,3.9 \mathrm{~Hz}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz})$, $6.42(\mathrm{dq}, 1 \mathrm{H}, J=7.1,15.6 \mathrm{~Hz}), 6.98(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.34$ $(\mathrm{d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.56(\mathrm{dq}, 1 \mathrm{H}, J=2.1,15.6 \mathrm{~Hz})$.

Allyl ( $6 S, 7 S$ )-8-Oxo-3-[3-(phenylseleno)propyl]-7-(trit-ylamino)-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylate (27). A suspension of 4 -(phenylseleno) butanoic acid ${ }^{16}(21.7 \mathrm{~g}, 89.3$ mmol ) and oxalyl chloride ( $10.1 \mathrm{~mL}, 1.3$ equiv) was left stirring for 16 h at ambient temperature. Distillation afforded 4-(phenylseleno) butyryl chloride ( $18.1 \mathrm{~g}, 78 \%$ ) as a pale yellow liquid: bp $132{ }^{\circ} \mathrm{C}(0.15 \mathrm{~mm}) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.04$ (quin, $2 \mathrm{H}, J=7.1$ $\mathrm{Hz}), 2.92(\mathrm{t}, 2 \mathrm{H}, 7.1 \mathrm{~Hz}), 3.05(\mathrm{t}, 2 \mathrm{H}, 7.1 \mathrm{~Hz}), 7.25-7.53(\mathrm{~m}, 5$ H).

With this acid chloride, the azetidinone 10 was converted to allyl 2-[(3S,4S)-4-[[(tert-butyldimethylsilyl)oxy]methyl]-2-oxo-3-(tritylamino)-1-azetidinyl]-3-oxo-6-(phenylseleno)hexanoate (13) ( $76 \%$ yield): $R_{f} 0.44$ (EtOAc/hexane, 1:4).

Desilylation of 13 afforded allyl $2-[(3 S, 4 S)$-4-(hydroxy-methyl)-2-oxo-3-(tritylamino)-1-azetidinyl]-3-oxo-6-(phenylseleno)hexanoate (20) ( $73 \%$ yield): $R_{f} 0.1$ (EtOAc/hexane, 1:4).

Cyclization of 20 gave the $O$-2-isocephem ( 27 ) ( $91 \%$ yield): mp $62-63^{\circ} \mathrm{C}$; IR (KBr) $3320,1770,1710 \mathrm{~cm}^{-1}$; NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 1.87$ $(\mathrm{m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 6 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.78$ $(\mathrm{m}, 3 \mathrm{H}), 5.18-5.41(\mathrm{~m}, 2 \mathrm{H}), 5.84-6.03(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.46(\mathrm{~m}$, $20 \mathrm{H})$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Se}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Allyl ( $6 S, 7 S)-7-[[(R)-N-[(A l l y l o x y)$ carbonyl]-2-(4-hydroxyphenyl)glycyl]amino]-3-[3-(phenylseleno)-propyl]-8-oxo-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2carboxylate (34). By use of the aforementioned procedure, the
(15) Trifluoroacetaldehyde was generated from the commercially available ethyl hemiacetal. An equal volume of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added to the hemiacetal under an Ar atmosphere. The resulting mixture was heated to $100^{\circ} \mathrm{C}$, and slightly impure aldehyde was collected in a receiver, which had been cooled to $-78^{\circ} \mathrm{C}$. This was redistilled to give pure material ( ${ }^{1} \mathrm{H}$ NMR).
(16) The acid was prepared according to a literature procedure: Scarborough, R. M.; Smith, A. B. Tetrahedron Lett. 1977, 4361. It was obtained as a yellow solid: bp $170-172^{\circ} \mathrm{C}(0.25$ mm ); NMl2 $\left(\mathrm{CDCl}_{3}\right) \delta 1.99$ (quin, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}$ ), 2.50 ( $\mathrm{t}, 2$ $\mathrm{H}, J=7.1 \mathrm{~Hz}), 2.94(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.21-7.51(\mathrm{~m}, 5 \mathrm{H})$.
tritylamine 27 was converted to the glycine derivative 34 ( $90 \%$ yield): mp 72-73 ${ }^{\circ} \mathrm{C} ; R_{f} 0.33$ (EtOC/hexane, 1:1); IR (KBr) 3300, $1760,1690 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.89(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, 2 \mathrm{H}, J$ $=7.5 \mathrm{~Hz}), 2.85(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H})$, $4.22(\mathrm{dd}, 1 \mathrm{H}, J=10.9,3.8 \mathrm{~Hz}), 4.49-4.68(\mathrm{~m}, 4 \mathrm{H}), 5.06-5.38(\mathrm{~m}$, $5 \mathrm{H}), 5.75-5.98(\mathrm{~m}, 3 \mathrm{H}), 6.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, 2 \mathrm{H}, J=11.1$ $\mathrm{Hz}), 6.97(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=11.1 \mathrm{~Hz}), 7.19-7.47(\mathrm{~m}, 4 \mathrm{H})$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Se}\right) \mathrm{C}, \mathrm{N} ; \mathrm{H}$ : calcd, 5.81 ; found, 5.28 .
( $6 S, 7 S$ )-7-[[(R)-(4-Hydroxyphenyl)glycyl]amino]-8-oxo-3-(2-propenyl)-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylic Acid (50). A solution of the selenide $34(1.50 \mathrm{~g}, 2.29 \mathrm{mmol})$ in a mixture of $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and 1,1,1-trichloroethane ( 120 mL ) was cooled to $-15^{\circ} \mathrm{C}$, and $m$-chloroperbenzoic acid ( $496 \mathrm{mg}, 80 \%$, 1 equiv) was added with stirring. After 0.5 h , pyridine ( 0.74 mL , 4 equiv) followed by dihydropyran ( 8.36 mL , 40 equiv) was added, and the reaction was placed in an oil bath $\left(130^{\circ} \mathrm{C}\right)$. After being heated at reflux for 1.5 h , the reaction mixture was allowed to cool to room temperature. It was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with an aqueous HCl solution $(3 \times 10 \mathrm{~mL}, 1 \mathrm{~N})$, a saturated aqueous $\mathrm{NaHCO}_{3}$ solution $(3 \times 15 \mathrm{~mL})$, and brine ( 2 $\times 5 \mathrm{~mL}$ ). Drying followed by removal of the solvents left an oil, which was chromatographed to give allyl $(6 S, 7 S)-7-[[(R)-N-$ [(allyloxy)carbonyl]-2-(4-hydroxyphenyl)glycyl]amino]-3-(2-propenyl-8-oxo-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylate ( 40 ) ( $998 \mathrm{mg}, 88 \%$ yield) as a foam: $R_{f} 0.33$ ( $\mathrm{EtOAc} / \mathrm{hexane}, 1: 1$ ); NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 3.37(\mathrm{~d}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~m}$, $1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~m}, 2 \mathrm{H}), 5.02-5.47(\mathrm{~m}$, $8 \mathrm{H}), 5.65-6.00(\mathrm{~m}, 3 \mathrm{H}), 6.55(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.04(\mathrm{~d}, 2 \mathrm{H}$, $J=7.2 \mathrm{~Hz}$ ).

Palladium-catalyzed deprotection of the 3-propenyl derivative 40 gave the final product 50 ( $64 \%$ yield) as an off-white powder: UV ( $\left.\mathrm{H}_{2} \mathrm{O}\right) 270 \mathrm{~nm}(\epsilon 10000)$; IR (KBr) $1750,1700,1630 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 3.36(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.89(\mathrm{ddd}, 1 \mathrm{H}$, $J=10.2,3.9,4.7 \mathrm{~Hz}), 4.21(\mathrm{dd}, 1 \mathrm{H}, J=10.2,3.9 \mathrm{~Hz}), 5.09(\mathrm{~s}$, $1 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 5.78-5.92(\mathrm{~m}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$.

Allyl (6S,7S)-8-Oxo-7-(tritylamino)-1-aza-4-oxabicyclo-[4.2.0]oct-2-ene-2-carboxylate (28). With use of acetic formic anhydride, ${ }^{17}$ the azetidinone 10 was converted to allyl 2-[(3S,4S)-4-[[(tert-butyldimethylsilyl)oxy]methyl]-2-oxo-3-(trity-lamino)-1-azetidinyl]-3-oxopropanoate (14) ( $86 \%$ yield): $R_{f} 0.63$ (EtOAc/hexane, 1:4).

Desilylation of 14 gave allyl 2-[(3S,4S)-4-(hydroxymethyl)-2-oxo-3-(tritylamino)-1-azetidinyl]-3-oxopropanoate (21) (89\% yield): $R_{f} 0.25$ ( $\mathrm{EtOAc} /$ hexane, $19: 1$ ).

Cyclization of 21 gave the $O$-2-isocephem 28 ( $39 \%$ yield): $R_{f}$ 0.55 (EtOAc/hexane, $1: 4$ ); mp $126-129^{\circ} \mathrm{C} ;[\alpha]^{21} \mathrm{D}-12^{\circ}$ (c 1.0, $\mathrm{CHCl}_{3}$ ); IR (KBr disk) $3460,1760,1715,1680,1650 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) \delta 2.95(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~m}, 2 \mathrm{H}), 4.81$ $(\mathrm{d}, 1 \mathrm{H}, J=4.3 \mathrm{~Hz}), 5.17-6.00(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.38(\mathrm{~m}, 16 \mathrm{H})$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Allyl $(6 S, 7 S)-[[(R)-N-[(A l l y l o x y)$ carbonyl]-2-(4-hydroxyphenyl)glycyl]amino]-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylate (35). The tritylamine 28 was converted to the glycyl derivative 35 ( $63 \%$ yield): $R_{f} 0.44$ (EtOAc: hexane, 3:1); mp 107-109 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{21}{ }_{\mathrm{D}} 63^{\circ}$ (c 1.0, $\mathrm{CHCl}_{3}$ ); IR (KBr disk) 3320, $1770,1700,1620 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) \delta 3.53-4.22(\mathrm{~m}, 3 \mathrm{H})$, $4.50-4.65(\mathrm{~m}, 4 \mathrm{H}), 5.10-5.48(\mathrm{~m}, 4 \mathrm{H}), 5.76-5.96(\mathrm{~m}, 2 \mathrm{H}), 6.58-7.10$ (m,5 H). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}$; N : calcd, 9.19 ; found, 8.52.
(6S,7S )-7-[[(R)-2-(4-Hydroxyphenyl)glycyl]amino]-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylic Acid (51). Deprotection of 35 afforded the product 51 ( $60 \%$ yield): IR ( KBr ) $1765,1690,1620 \mathrm{~cm}^{-1} ; \mathrm{UV}\left(\mathrm{H}_{2} \mathrm{O}\right) 264$ ( $\epsilon 6900$ ), $232 \mathrm{~nm}(\epsilon 9000)$; NMR ( $\mathrm{D}_{2} \mathrm{O}$ ) $\delta 3.42(\mathrm{t}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}$ ), 3.89 (ddd, $1 \mathrm{H}, J=10.3$, $3.9 \mathrm{~Hz}, 4.8 \mathrm{~Hz}$ ), $4.23(\mathrm{dd}, 1 \mathrm{H}, J=10.3,3.9 \mathrm{~Hz}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.62$ $(\mathrm{d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 6.98(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.36$ $(\mathrm{d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$.

Allyl (6S,7S)-3-Methyl-8-oxo-7-(tritylamino)-1-aza-4-ox-abicyclo[4.2.0]oct-2-ene-2-carboxylate (29). With use of acetyl chloride, the azetidinone 10 was converted to allyl $2-[(3 S, 4 S)$ -4-[[(tert-butyldimethylsilyl) oxy]methyl]-2-oxo-3-(tritylamino)-1-azetidinyl]-3-oxobutanoate (15) ( $87 \%$ yield): $R_{f} 0.49$ (EtOAc/hexane, 1:4).

[^4]Desilylation of 15 gave allyl 2-[(3S,4S)-4-(hydroxymethyl)-2-oxo-3-(tritylamino)-1-azetidinyl]-3-oxobutanoate (22) ( $95 \%$ yield): $R_{f} 0.23$ (EtOAc/hexane, 1:4).

Cyclization of 22 gave the 3 -methyl- $O$-2-isocephem 29 ( $95 \%$ yield): $R_{f} 0.58$ (EtOAc/hexane, 1:4); mp $88-89^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+90^{\circ}$ (c $0.5, \mathrm{CHCl}_{3}$ ); IR (KBr) $3340,1760,1710,1610 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.$ $\left.+\mathrm{D}_{2} \mathrm{O}\right) \delta 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{dt}, 1 \mathrm{H}, J=9.8,4.1 \mathrm{~Hz}), 2.53(\mathrm{dd}$, $1 \mathrm{H}, J=9.8,4.1 \mathrm{~Hz}$ ), $2.88(\mathrm{t}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}), 4.29(\mathrm{~d}, 1 \mathrm{H}, J$ $=4.1 \mathrm{~Hz}), 4.36-6.02(\mathrm{~m}, 5 \mathrm{H}), 6.89-7.29(\mathrm{~m}, 15 \mathrm{H}$, arom). Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(6S,7S )-7-[[(R)-2-(4-Hydroxyphenyl)glycyl]amino]-3-methyl-8-oxo-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylic Acid (52). The $7 \beta$-tritylamine 29 was converted to the protected glycyl derivative 36 ( $58 \%$ yield): $R_{f} 0.51$ (EtOAc/hexane, 3:2); $\operatorname{mp~141-143}{ }^{\circ} \mathrm{C} ;[\alpha]^{22} \mathrm{D}+72^{\circ}$ (c 1.0, $\mathrm{CHCl}_{3}$ ); IR (KBr) 3320, 1720, $1680,1620 \mathrm{~cm}^{-1}$.

Deprotection gave the product 52 ( $44 \%$ yield) as a white powder: UV $\left(\mathrm{H}_{2} \mathrm{O}\right) 266(\epsilon 9200), 232 \mathrm{~nm}(\epsilon 10500)$; IR ( KBr ) 3200, $1760,1690,1600 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.04(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{t}, 1 \mathrm{H}$, $J=10.3 \mathrm{~Hz}$ ), 3.86 (ddd, $1 \mathrm{H}, J=10.3,4.6,3.8 \mathrm{~Hz}$ ), 4.19 (dd, 1 $\mathrm{H}, J=10.3,3.8 \mathrm{~Hz}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 6.98$ $(\mathrm{d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz})$.

Allyl (6S,7S)-3-Propyl-8-oxo-7-(tritylamino)-1-aza-4-ox-abicyclo[4.2.0]oct-2-ene-2-carboxylate (30). With use of butyryl chloride, the azetidinone 10 was converted to allyl $2-[(3 S, 4 S)$ -4-[[(tert-butyldimethylsilyl)oxy]methyl]-2-oxo-3-(tritylamino)-1-azetidinyl]-3-oxohexanoate (16) $\left(90 \%\right.$ yield): $R_{f} 0.53$ (EtOAc/hexane, 1:4).

Desilylation of 16 gave allyl 2-[(3S,4S)-4-(hydroxymethyl)-2-oxo-3-(tritylamino)-1-azetidinyl]-3-oxohexanoate (23) (95\% yield): $R_{f} 0.26$ (EtOAc/hexane, 1:4).

Cyclization of 23 gave the 3-propyl- 0 - 2 -isocephem 30 ( $81 \%$ yield): $R_{f} 0.54$ (EtOAc/hexane, 1:4); mp $154-156^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+104^{\circ}$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) 3430,1770,1705,1600 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$ $\left.+\mathrm{D}_{2} \mathrm{O}\right) \delta 0.86(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H})$, $2.94(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 4.57-6.01(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.38(\mathrm{~m}$, $15 \mathrm{H})$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(6S,7S)-7-[[(R)-2-(4-Hydroxyphenyl)glycyl]amino]-3-propyl-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylic Acid (53). The $7 \beta$-tritylamine 30 was converted to the glycyl derivative 37 ( $78 \%$ yield): $[\alpha]_{D}+61^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$ ); $\mathrm{mp} 92-95^{\circ} \mathrm{C}$; IR (KBr) $3320,1760,1720,1680,1620 \mathrm{~cm}^{-1}$.

Deprotection of 37 gave the product 53 ( $33 \%$ yield): UV $\left(\mathrm{H}_{2} \mathrm{O}\right)$ 203 ( $\epsilon 11500$ ), 266 nm ( $\epsilon 10300$ ); IR (KBr) 3200, 1760, 1690, 1600 $\mathrm{cm}^{1}$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 0.84(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 2.32$ (dt, $1 \mathrm{H}, J=13.9,7.0 \mathrm{~Hz}$ ), $2.65(\mathrm{dt}, 1 \mathrm{H}, J=13.9,7.0 \mathrm{~Hz}$ ), 3.45 ( $\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}$ ), 3.87 (ddd, $1 \mathrm{H}, J=10.2,3.8,4.6 \mathrm{~Hz}$ ), 4.20 (dd, $1 \mathrm{H}, J=10.2,3.8 \mathrm{~Hz}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~d}, 1 \mathrm{H}, J=4.6$ $\mathrm{Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$.

Allyl (6S,7S)-7-[[(R)-N-[(Allyloxy)carbonyl]-2-(4-hydroxyphenyl)glycyl]amino]-3-cyclopropyl-8-0xo-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylate (38). With use of cyclopropanecarboxylic acid chloride, the azetidinone 10 was converted to allyl $2-[(3 S, 4 S)-4-[[($ tert-butyldimethylsilyl)oxy]-methyl]-2-oxo-3-(tritylamino)-1-azetidinyl]-3-oxo-3-cyclo-
propylpropanoate (17) ( $95 \%$ yield): $R_{f} 0.55$ (EtOAc/hexane, $1: 4$ ).
Desilylation of 17 gave allyl 2-[(2S,4S)-4-(hydroxymethyl)-2-oxo-3-(tritylamino)-1-azetidinyl]-3-oxo-3-cyclopropylpropanoate (24) ( $95 \%$ yield): $R_{f} 0.24$ (EtOAc/hexane 1:4).

Cyclization of 24 gave allyl ( $6 S, 7 S$ )-3-cyclopropyl-8-oxo-7-(tritylamino)-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylate (31) ( $95 \%$ yield) as a white solid: $R_{f} 0.31$ ( $\mathrm{EtOAc} /$ hexane, $3: 17$ ); mp $141-143^{\circ} \mathrm{C}$ ) $[\alpha]^{21} \mathrm{D}^{5} 59^{\circ}$ (c 1.0, $\mathrm{CHCl}_{3}$ ); IR (KBr) 3340, 1750, 1690, $1590 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.63-0.92(\mathrm{~m}, 4 \mathrm{H}), 2.77-2.91(\mathrm{~m}, 4$ H), 3.53 (m, 1 H), 4.60-4.83 (m, 3 H), 5.19-5.43 (m, 2 H), $5.87-6.07$ (m, 1 H ) , 7.20-7.37 (m, 15 H ).

The tritylamine 31 was converted to the glycine derivative 38 ( $78 \%$ yield): $[\alpha]^{21}{ }_{\mathrm{D}} 9.8$ (c $1.0, \mathrm{CHCl}_{3}$ ); mp $110-115^{\circ} \mathrm{C}$; IR ( KBr ) $3100,1770,1690,1600 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) \delta 0.71-0.99(\mathrm{~m}$, $4 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H})$, $4.41-4.77(\mathrm{~m}, 4 \mathrm{H}), 5.14-5.40(\mathrm{~m}, 6 \mathrm{H}), 5.75-6.07(\mathrm{~m}, 2 \mathrm{H}), 6.60$ $(\mathrm{m}, 2 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
( $6 S, 7 S$ )-3-Cyclopropyl-7-[[ $(\boldsymbol{R})-2$-(4-hydroxyphenyl)-glycyl]amino]-8-oxo-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2carboxylic Acid (54). Deprotection of 38 gave the product 54 ( $37 \%$ yield) as a white powder: IR (KBr) $3200,1740,1680,1610$ $\mathrm{cm}^{-1} ; \mathrm{UV}\left(\mathrm{H}_{2} \mathrm{O}\right) 274(\epsilon 10000), 232 \mathrm{~nm}(\epsilon 11000) ; \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}+\right.$ $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \delta 0.75-1.04(\mathrm{~m}, 4 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{t}, 1 \mathrm{H}, J=$ $10.3 \mathrm{~Hz}), 3.88$ (ddd, $1 \mathrm{H}, J=10.3,4.6,3.9 \mathrm{~Hz}$ ), $4.26(\mathrm{dd}, 1 \mathrm{H}, J$ $=10.3,3.9 \mathrm{~Hz}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 6.97(\mathrm{~d}$, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$ ), $7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}$ ).

Acknowledgment. We are grateful to P. Lapointe and S. Plamondon for their technical assistance.

Registry No. 5, 86299-41-4; 6, 86334-63-6; 7 (disilylated), 113627-36-4; 8, 113599-60-3; 9 (detritylated), 113599-59-0; 10, 113599-63-6; 12, 113599-64-7; 13, 113599-65-8; 14, 113599-66-9; 15, 113599-67-0; 16, 113599-68-1; 17, 113599-69-2; 18, 113599-70-5; 19, 113599-71-6; 20, 113599-72-7; 21, 113599-73-8; 22, 113599-74-9; 23, 113599-75-0; 24, 113599-76-1; 25, 113599-77-2; 26, 113599-78-3; 27, 113599-79-4; 28, 113599-80-7; 29, 113599-81-8; 30, 113627-35-3; 31, 113599-82-9; 32, 113599-83-0; 33, 113599-84-1; 34, 113599-85-2; 35, 113599-86-3; 36, 113599-87-4; 37, 113599-88-5; 38, 113599-89-6; 39, 113599-90-9; 40, 113599-91-0; 41, 113599-92-1; 42, 113599-93-2; trans-43, 113599-94-3; cis-43, 113666-83-4; trans-44, 113599-95-4; cis-44, 113666-84-5; 45, 113599-96-5; 46, 113599-97-6; 47, 113666-85-6; 48, 113599-98-7; 49, 113666-86-7; 50, 113599-99-8; 51, 113600-00-3; 52, 113600-01-4; 53, 113600-02-5; 54, 113600-03-6; allyl 2-bromoacetate, 40630-84-0; 3-(phenylseleno)propionic acid, 16599-78-3; 3-(phenylseleno)propionyl chloride, 113600-04-7; (R)-2-(4-hydroxyphenyl)glycine, 22818-40-2; (R)-[ $N$-(allyloxy-carbonyl)]-2-(4-hydroxyphenyl)glycine, 84792-41-6; allyl (6S, 7S)-7-amino-3-[2-(phenylseleno)ethyl]-8-oxo-1-aza-4-oxabicyclo-[4.2.3]oct-2-ene-2-carboxylate ( $p$-toluenesulfonic acid salt), 113666-87-8; allyl (6S, 7S)-7-amino-3-[2-(phenylseleno)ethyl]-8-oxo-1-aza-4-oxabicyclo[4.2.0]oct-2-ene-2-carboxylate, 113600-05-8; chloroacetyl chloride, 79-04-9; acetaldehyde, 75-07-0; trifluoroacetaldehyde, 75-90-1; 4-(phenylseleno)butanoic acid, 23768-06-1; 4-(phenylseleno)butyryl chloride, 104680-44-6; cyclopropanecarboxylic acid chloride, 4023-34-1.


[^0]:    ${ }^{\dagger}$ Antiinfective Research.
    ${ }^{\ddagger}$ Department of Microbiology.

[^1]:    (2) (a) Doyle, T. W.; Douglas, J. L.; Belleau, B.; Conway, T. T.; Ferrari, C. F.; Horning, D. E.; Lim, G.; Luh, B.-Y.; Martel, A.; Menard, M.; Morris, L. R. Can. J. Chem. 1980, 58, 2508 and earlier papers in the series. (b) Other racemic 0 -2-isocephem syntheses: Hakimelahi, G. H.; Just, G.; Ugolini, A. Helv. Chim. Acta 1982, 65, 1368. McCombie, S. W.; Metz, W. A.; Afonso, A. Tetrahedron Lett. 1986, 27, 305. Hrytsak, M.; Durst, T. Heterocycles 1987, 26, 2393. (c) Enantioselective syntheses: Tenneson, S. M.; Belleau, B. Can. J. Chem. 1980, 58, 1605. Natta, H.; Hatanaka, M.; Ishimaru, T. J. Chem. Soc., Chem. Commun. 1987, 51. A preliminary account of this work has appeared: Mastalerz, H.; Vinet, V. J. Chem. Soc., Chem. Commun. 1987, 1283.
    (3) A similar condensation has been used to synthesize a clavulanic acid derivative: Eglington, J. J. Chem. Soc., Chem. Commun. 1977, 720.
    (4) (a) Hubschwerlen, C. Synthesis 1986, 962 and references therein. (b) Evans, D. A.; Sjogren, E. B. Tetrahedron Lett. 1985, 3783 .
    (5) For the O -alkylation of $\beta$-diketones under these conditions see: Mitsunobu, O. Synthesis 1981, 1.

[^2]:    (6) (a) Leitner, F.; Pursiano, T. A.; Buck, R. E.; Tsai, Y. H.; Chisholm, D. R.; Misiek, M.; Desiderio, J. V.; Kessler, R. E. Antimicrob. Agents Chemother. 1987 31, 238. (b) Naito, T.; Hoshi, H.; Aburaki, S.; Abe, Y.; Okumura, J.; Tomatsu, K.; Kawaguchi, H. J. Antibiot. 1987, 40, 991.

[^3]:    (7) Kessler, R. E.; Bies, M.; Buck, R. E.; Chisholm, D. R.; Pursiano, T. A.; Tsai, Y. H.; Misiek, M.; Price, K. E.; Leitner, F. Antimicrob. Agents Chemother. 1985, 31, 207.
    (8) Leitner, F.; Chisholm, D. R.; Tsai, Y. H.; Wright, G. E.; DeRegis, R. G.; Price, K. E. Antimicrob. Agents Chemother. 1975, 7, 306 .
    (9) Santaniello, E.; Ponti, F.; Manzucchi, A. Synthesis 1978, 891.
    (10) Conditions used are modeled after those reported by: Kishimoto, S.; Sendi, M.; Tomimoto, M.; Hashigughi, S.; Matsuo, T.; Ochiai, M. Chem. Pharm. Bull. 1984, 32, 2646.

[^4]:    (17) Krimen, L. I. Org. Synth. 1970, 50, 1.

